ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-18-27195

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Performance Study and Optimization of FleCSALE using Tabular Equation
of State

Payne, Patrick Charles
Stegmeier, Nicholas William
Lakshmiranganatha, Sumathi
Akhmetova, Dana
Mukherjee, Diptajyoti
Ouellet, Frederick

General Presentation

2018-07-31

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

e LOS AlaMmos

NATIONAL LABORATORY
EST.1943

Performance Study and Optimization of
FleCSALE using Tabular Equation of State

Dana Akhmetova

Sumathi Lakshmiranganatha
Diptajyoti Mukherjee
Frederick Ouellet

Patrick Payne

Nicholas Stegmeier

Z
VY Q Gb
A >
National Nuclear Security Administration
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Objective

Explore new numerical and
computer science approaches to
efficiently use EOSPAC within the
context of FleCSALE and reduce
the cost of equation of state (EOS)

table queries

Motivation

« Tabular equation of state (EOS) data are constantly queried by
physics codes

* Queries can occur several times per time-step at each
computational cell for each material that exists at a query
location

* Queries regularly involve expensive interpolations of
thermodynamic quantities

 Thermodynamic quantities are necessary for computation of
additional physical quantities for the simulations

* Reducing the cost of tabular EOS queries provides an overall
reduction in the solution time for many complex physics
problems

Los Alamos National Laboratory 7/127/18 | 4

FleCSALE, FleCSI, + EOSPAC

* FleCSALE

— Continuum dynamics code, supports multi-phase fluids and tabular equation of
state (EOS)

—2D/3D cell-centered Eulerian and Lagrangian solver
— 3D FEM Lagrangian solver

 FleCSI

— Compile-time configurable framework designed to support multi-physics
application development

— Supports an MPI and Legion backend

— Primary structure is hierarchical, exposing low-level, mid-level, and high-level
interfaces that are appropriate for different sets of users

« EOSPAC
— Collection of interface routines
— Used to access the SESAME data library
— Can perform various data adjustments and interpolations on the SESAME data
— Inherently serial execution

Los Alamos National Laboratory 7/27/18 | 5

Triple Point Problem

* Fluids simulation involving three
different materials

— All materials are ideal gases

* Problem decomposed into four regions

— Left-most and bottom regions: two different
materials at the same density

— Top region: third material at low density
— Middle region: mixed composition & density

Initial Conditions

« All materials can use tabular EOS data S
for the simulations. TR P Y

Los Alamos National Laboratory 7/127/18 | 6

Bottlenecks and Strategies

* Initial Bottlenecks:
— Ghost Data Creation
— Material Grouping
— MPI Communication
— Interpolation

- Explored Strategies:
— Software Engineering
— MPI Communication Optimization --- sparse data
— Hybrid Programming --- OpenMP
— GPU Porting with different memory schemes
— Machine Learning

Los Alamos National Laboratory 7127118 | 7

Software Engineering

Los Alamos National Laboratory 7/27/18 | 8

FleCSALE/EOSPAC Linking

« Linking Optimizations:
— Enabled the inversion/storing of modified Sesame tables at the initialization of FleCSALE

— Reformatted FIeCSALE to send common material cells to EOSPAC as groups

Strong Scaling Comparison Relative Speedup
—a— Original 0.6- —&— Grouped
577 1 —=— Grouped
—== Linear Original
0.5
292 1 <
[}
e
= 150 - g 0.4 1
— [TH
E s c
0 3
[} = 0
.g 43 s -\/&.__—-\\
= o
251 e 0.2 1
161 o
121 0.1
7_
X 0.0
1 2 4 8 16 36 1 2 4 8 16 36
MPI Ranks MPI Ranks

Los Alamos National Laboratory 7/27/18 | 9

Sorting in EOSPAC’s Search Algorithm

» Before interpolations, EOSPAC places a stencil on the material table > eos_srchdfy()
» Approach uses an input to eos_srchdf() which gives the first point for the table sweep
* The indexes of the array of points to be interpolated are sorted before sweeping

 Two versions:
— Embedded in EOSPAC

— Inside of FleCSALE
Strong Scaling Comparison Relative Speedup
—=— OQOriginal 0.61 —=— Grouped
577 —=— Grouped —=— Outside Sort

—8— |nside sort
—=— Qutside sort
—-==- Linear Original

o©
&

o©
IS

Time (min)
~l
(o)

Proportion Faster
o o
) w

o
=

0.0 1

1 2 4 8 16 36
MPI Ranks MPI Ranks

Los Alamos National Laboratory 7/27/18 | 10

Problem-Dependent Performance

» There is potential for enhanced performance from the index sorting
which is problem dependent

« Example: CDSS Scaling Problem (Triple Point)
— Simulation density range = 0 to 3.5
— Sesame table range = 0 to ~61,000
— We only use roughly 20% of the table for this problem

Gas Density (kg/m®)

* Problems with larger property variations are more likely to obtain better
performance with the sorting approach

Los Alamos National Laboratory 7/27/18 | 11

Sparse Data Optimization

Los Alamos National Laboratory 7/27/18 | 12

Motivation

FlecSALE Weak Scaling

=
o
N

Execution time (sec)

101 4

15 60 238
MPI Ranks

=
g

N

Los Alamos National Laboratory 7/127/18 | 13

Sparse Data Optimization

Summary: maire_hydro_2d_triple_eospac.stf

* Weak scaling graph shows huge
communication latency

Total time: 209 sec. Resources: 16 processes, 1 node.

Ratio

This section represents a ratio of all MPI calls to the rest of your code
in the application.

)

 Tracing the application showed B e ey suewa
~74% of the code was MPI B OpenMP - 0 sec 0%
. . B MPI calls - 154 sec
communication calls

« MPI backend in FleCSI uses One
Sided Communication

)
73.7% [] Exclude from total time

Top MPI functions

This section lists the most active MPI functions from all MP| calls in the application.

 MPl_Win_create calls was the

most expensive with ~28% of the ML Win_create e 586500 (281 %)

execution time MPI_Win_complete I 32.4 sec (15.5 %)
MPI_Get

E=——— 21.2 sec (10.2 %)
MPI_Win_free I
[—

19.4 sec (9.31 %)

MPI_Isend 7.08 sec (3.39 %)

N

Los Alamos National Laboratory 7/27/18 | 14

Sparse Data Optimization —Copy removal

Summary: maire_hydro_2d_triple_eospac.stf

Unnecessary copies of data were

Total time: 105 sec. Resources: 16 processes, 1 node.

eliminated
Ratio
This section represents a ratio of all MP| calls to the rest of your code
) i in the application.
» Shared window creation was done

only once with reduction of
MPI_Win_create calls

B Serial Code - 45.4sec 43 %

MPI Communications takes about B OpenMP - 0 sec 0%
~57% B MPI calls - 60 sec 56.9 %

Top MPI functions
Pe rfo rmance I m p roveme nt This section lists the most active MPI functions from all MPI calls in the application.

« Single node ~20%
e Multi node ~40%

MPI_Win_complete NI 416 sec (39.4 %)

MPI_Get [N 11.7 sec(11.1 %)
MPI_Win_wait [3.89 sec(3.68 %)
MPI_Win_post [

1.09 sec (1.04 %)

MPI_Win_create | 0.598 sec (0.566 %)

N

Los Alamos National Laboratory 7/127/18 | 15

Sparse Data Optimization- MPIl_Datatype

« MPI_Datatype is used for shared
ghost cells to treat as a single
message

Summary: maire_hydro_2d_triple_eospac.stf

Total time: 79.4 sec. Resources: 16 processes, 1 node.

Ratio

This section represents a ratio of all MP| calls to the rest of your code
in the application.

Shared ghost cells

B Serial Code - 45.9sec 57.7 %

MPI_Get and MPI_Win_complete W OpenMP-Osec 0%
B MPI calls - 33.6 sec
calls reduced

MPI Communication takes about
43%

0,
42.2 % [[] Exclude from total time

Top MPI functions

This section lists the most active MPI functions from all MPI calls in the application.

MPI_Win_complete [N 25.2 sec(31.6 %)

* Performance Improvement

MPI_Win_wait [N 3.64 sec (4.57 %)

« Single node ~25% MPI_Get [N 2.27 sec (2.85 %)

« Multi node ~60% MPI_Win_post 1.11 sec (1.39 %)

‘ MPI_Win_create | 0.46 sec (0.577%)

Los Alamos National Laboratory 7/127/18 | 16

Performance Analysis

Weak Scaling Comparison 50 Relative Speedup
—=— OQOriginal
10° 1 —m— Copy removal as
—=— MP|_Datatype '
4.0
o
L}
2 35
Q o
€ 10%- >
s 9 3.0
5 2
'g n
3 2.5
o
X
w
2.0
10" -
1.5
! ! ! ! 1.0 I I I
1 4 15 60 238 1 4 15 60 238
MPI Ranks MPI Ranks

« Overall performance improvement ~80%
» Speedup of ~5x
- MPl_Win_complete is still expensive

Los Alamos National Laboratory 7/127/18 | 17

Hybrid programming with OpenMP

Los Alamos National Laboratory 7/127/18 | 19

Adding OpenMP in FIeCSALE

* Fork/join model:

Master thread Master thread’

> j}forli'_j Join

Thread 4

< Serial region >/ Parallel region '\< Serial region '>
\ v/ y

« Two OpenMP approaches were investigated:
— tasking;
— for-loop work-sharing.

Los Alamos National Laboratory 7/27/18 | 20

Adding OpenMP in Flecsale

« Changes done in: maire hydro/tasks.h

* Mesh: triple_200x81.g

* Flags: -g -O3 -fopenmp

« Compilers: gcc/7.3.0 and intel/18.0.2

« MPI implementation: mpich/3.2.1-intel_18.0.2

» Platform: Intel Haswell --- E5-2698 v3
— Sockets --- 2
— Cores per Socket --- 16
— NUMA Domains --- 2

N

Los Alamos National Laboratory 7/127/18 | 21

Performance results

Adding OpenMP in FleCSALE
650

600 (0 o o

?187 550
= ® ® ® OpenMP
@
500 ®
450
| 2 4 8 16 32 64

Number of threads

Los Alamos National Laboratory 7/27/18 | 22

GPU Porting for EOSPAC

Los Alamos National Laboratory 7/127/18 | 23

Motivation

* FleCSALE queries EOSPAC for ——
interpolated EOS values. Loading £0S

 Profiling revealed Interpolation
was costliest part of FleCSALE,
~15% of simulation.

« Can be parallelized easily.

 GPUs are next generation
hardware for intensive
computations.

* Interpolation is not memory
intensive.

Device code
Interpolation schemes

Host code

Interpolated
EOS values

Los Alamos National Laboratory 7/127/18 | 24

Methodology

* Wrapper around Birational
Interpolation kernel and Bilinear
Interpolation kernel that can be Host memory

called inside EOSPAC. Unpinned Mepped pinne:

- No changes to the public o interpolate
interfaces. Only need a separate
library compilation.

* Interpolation algorithms are
called multiple times within a Device memory
single FIeCSALE time-step. GlobalMiemory

 No Memcpy is necessary for the
interpolated values.

Los Alamos National Laboratory 7/127/18 | 25

Bilinear Interpolation

« Can be executed by the
hardware using texture
memory.

« Requires the use of 32 hit,
single precision data types

» Use of single precision types
provides an improved
processing throughput of at
least 2x, depending on
architecture

» Texture memory allows us to
store tables in the unified L1
cachel/texture cache

Mapped, pinned
values 10

Ghost Data Results
Interpolate

Texture Memory

Ghost Data

Global Memory

Results

Los Alamos National Laboratory 7/27/18 | 26

Speed-up from CUDA

10° Number of elements vs. Time Comparison for Synchronous Memcopies
 — Pascal P100
| wmmmm Broadwell (Serial)
102 A
0
(0] 101 o
E :
-
100 -
10_1 T ML | T ML | T ML | T UL | T UL | T ML | T
100 10! 102 103 104 10° 106 107
Number of elements to interpolate

Los Alamos National Laboratory 7/127/18 | 28

Speed-up from CUDA

103 Number of elements vs. Time Comparison for Unified Memory Pt. 1
=== Pascal P100
| — Broadwell (Serial)

Time (s)

10_1 T T L T T L T T L T T L T T L T T T
10° 10! 107 103 10% 10° 10°
Number of elements to interpolate

107

Los Alamos National Laboratory 7/127/18 | 29

Speed-up from CUDA

103 Number of elements vs. Time Comparison for Unified Memory Pt. 2

| = Pascal P100
|1 === Broadwell (Serial)

Time (s)

10_1 T T T T T T T T L | T T L | T T L | T T T T T
10° 10t 102 103 104 10° 106 10’
Number of elements to interpolate

Los Alamos National Laboratory 7/27/18 | 30

Speed-up from CUDA

103 Number of elements vs. Time Comparison for Mapped, Pinned Memory

mmmm P3scal P100
| — Broadwell (Serial)

Time (s)

10_1 T T ML | T T ML | T T ML | T T ML | T T ML | T T TrorTT
10° 10! 102 103 104 10° 106
Number of elements to interpolate

Los Alamos National Laboratory 7/127/18 | 31

107

Speed-up from CUDA

Number of elements vs. Time Comparison for All Implementations

103 -
] === CUDA Sync. Memcopy
== CUDA Unified Mem Pt. 1
] CUDA Unified Mem Pt. 2 v
= = CUDA Host Pinned Memory /
s Broadwell (Serial) P A
102 -+
poe e e e @ @ @
0
@ 10! 4
E :
=
— =
1009 |
:-l'..-llllll----.
1071 ———r 2

100 10! 102 103 104 10° 106
Number of elements to interpolate

Los Alamos National Laboratory 7/27/18 | 32

Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation

107 . 225 : ‘ 10

10-15

-16

Temperature (K)
-
o
()}
Relative difference in Interpolated values

-17

it 2000 4000 6000 8000

Density (Mg/m~3)

Los Alamos National Laboratory 7/127/18 | 34

Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation

10’ , , , , 1074

-16

Temperature (K)
(-
(@]
[¢)]
Relative difference in dFx

-17

10 10

2000 4000 6000 8000
Density (Mg/m~™ 3)

Los Alamos National Laboratory 7/127/118 | 35

Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation

10’ —= . : : .
==
——
>
[V
©
< =
Bary Q
[O
5 g
S 10°} 5
g F =
[©
: F :
>
- C—)
©
T
o
-15
110
5
10

2000 4000 6000 8000
Density (Mg/m~3)

Los Alamos National Laboratory 7/27/118 | 36

Machine Learning for EOS Interpolation

Los Alamos National Laboratory 7/127/18 | 37

Machine Learning for EOS Interpolation

Goal: Replace calls to EOSPAC with ML regression.

Process:

1. Generate a training dataset using EOSPAC

2. Train the model

3. Characterize the error (compared to EOSPAC)
4. Integrate with FleCSALE

ML Models:
» Kernel Ridge Regression (KRR)
« Random Forest (RF)

»lib C++ Library

Model Framework

Nomenclature: density (d), internal energy (ie), pressure (p), temperature (T),
soundspeed (ss)

Pressure model

* F(d,ie) =p featlures
Temperature model F(2\ =
X) =y

* F(d,ie,p)=T

Soundspeed model
* F(d,ie,p,T) =ss

labels

Los Alamos National Laboratory 7/127/18 | 39

Machine Learning Error Analysis

Random forest vs. Kernel Ridge Regression
« RF is more accurate but much slower

* RF takes ~3GB

KRR takes ~1.5KB

Random Forest 9982 Pressure Actual vs. Predicted e KRR 9982 Pressure Actual vs. Predicted

1.6 Tt et o : ;

._.-.‘V ‘-‘.- Mg R _\.\(\
N \\Q 10-6

1.4 :.:_" - N 1.4 10-2
2124 £ 1077 3121
o F @ 10-3
& P 5 @ 5
= 5 = o i
£ 10 - = § 197
€ S =

- 10 10-4
0.8 - 08 -1
0.6 10-2 0.6 h 1073
0.2 0.‘4 0.16 0.18 1.10
Density

Density

7/27/18 | 40

Los Alamos National Laboratory

KRR Correlation plots

soundspeed
=3.94e-03

mse

temperature
=3.46e+00

mse

pressure
=1.64e-03

mse

0.8

0.6

0.4

100 150

50

3000 4000

2000

2000 A

6000 A

15000

10000

-=-= Perfect

—-== Simulation Bounds

On-node Performance Comparison

Strong Scaling Comparison Relative Speedup
147 1 —s— Flecsale 400x161 Original
—a— Flecsale 400x161 Grouped
90 - —=— Flecsale 400x161 ML 0:304
-=-=Linear Original

56 b

® 0:254
— 7))
£ 361 i
£ c

; 24 '2 0.20 -
=
.§. 17 1 (=}
= o

13- © 0.151
o

8 3
0.10 1
1 2 4 8 16 36 1 2 4 8 16 36
MPI Ranks MPI Ranks

Los Alamos National Laboratory 7127/18 | 44

Machine Learning Take-aways

« Accuracy and speed tradeoff
« Even with low accuracy, performance is questionable (in this case)

e Other ML models and C++ libraries exist

Los Alamos National Laboratory 7127/18 | 45

Final Results

Los Alamos National Laboratory 7127/118 | 46

* Proper selection of integration options and algorithms within EOSPAC
provide a noticeable speed-up in FleCSALE

« Sparse data optimization with MPI backend shows a significant
improvement about ~5x speed-up

« Initial CUDA results are promising and show a considerable speedup.
However, integration with FleCSALE and host code optimizations are
still required

* Initial machine learning integration did not increase performance, but
other models and libraries could offer improvements

Los Alamos National Laboratory 7127/18 | 47

« Add additional host code optimizations that allow for additional GPU
performance improvements

- Take advantage of additional memory management schemes to further
reduce the memory latency involved with GPU usage

» Study the performance of MPI and Legion backends, with and without
the additional optimizations

 Utilize different parallel programming models within FleCSALE, (e.g.,
MPI + CUDA)

- Explore other types of Target Synchronization techniques for MPI
communication like MPI_Lock, MPI_Unlock.

 Investigate other machine learning libraries (e.g., TensorFlow, MLPACK)

Los Alamos National Laboratory 7/127/18 | 48

Acknowledgements

Thank you to the Co-Design Mentors,
FleCSI Development Team, CCS-7, ISTI,
ASC, & LANL

